Spatial and temporal variations of CO₂ emissions from the active fault zones in the capital area of China

Zhi Chen a, Ying Li a, Giovanni Martinelli b, Zhaofei Liu a, Chang Lu a, Yuanxin Zhao a

a CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Forecasting), China Earthquake Administration, Beijing, 100036, China
b ARPAE Environmental Protection Agency of Emilia Romagna Region, 42100, Reggio Emilia, Italy

1. Introduction

Earth degassing of CO₂ has been proven to contribute significantly to the global carbon budget (Camarda et al., 2009, 2016; Tamburello et al., 2018). Present-day investigation for earth degassing of CO₂ mainly focuses on volcanic, mud volcanic and geothermal regions (Chiò et al., 1998; Etiöpe et al., 2007; Sun et al., 2017; Chen et al., 2019). However, volcano has been found to be the most relevant geologic body for earth degassing of CO₂, and investigation for spatial and temporal variations of soil CO₂ emission is identified as an essential tool for volcano activity monitoring, based on abundant researches (Irwin and Barnes, 1980; Perez et al., 1996; Fu et al., 2005; Walla et al., 2010; Di Martino et al., 2013, 2016; Capasso et al., 2017; Camarda et al., 2019). While the investigation of nonvolcanic CO₂ discharges has risen exponentially in the last decades (Allard et al., 1991; Fu et al., 2005; Toutain et al., 2009; Caudron et al., 2012; Zhao et al., 2018).

Active faults and recent fractures are preferential migration pathways for deep gases (CO₂, Rn, He, etc.), due to their enhanced permeability and porosity relative to the surrounding rocks, along which gases can buoyantly migrate upwards (Dogan et al., 2009; Fu et al., 2017; Chen et al., 2018, 2019). Recent investigations of origin and output of soil CO₂ degassing from active faults have been performed in locations that include China, America, Turkey, California etc. (Dogan et al., 2009; Kulungoski et al., 2013; Lewicki et al., 2013; Jung et al., 2015; Zhou et al., 2016; Yuce et al., 2017), and high soil CO₂ concentration and flux have been frequently observed at active fault zones worldwide especially in extensional geological contexts (Chiò et al., 2010; Han et al., 2014). The results of these studies suggest that CO₂ output from active faults can be of great importance to the global carbon budget (Italiano et al., 2009; Zhao et al., 2018). In addition, general overviews of the geochemical, structural, and seismic features in tectonically active areas have shown some evidence for the correlation between soil gas
CO₂ anomalies and tectonic activities, and indicated that CO₂ discharge through faults and fractures in active fault zones might be enhanced by earthquake activity (Wakitani et al., 1980; Toutain et al., 1992; Giotoli et al., 1998; King et al., 1996; Italiano et al., 2009; Camarda et al., 2016; Sciarra and Coltorti, 2017). CO₂ concentration and flux surveys along active fault zones have been widely undertaken for researches oriented to contribute to earthquake forecasting (Carracuasi et al., 2003; Fu et al., 2008; Sciarra and Coltorti, 2017). Investigations of the soil CO₂ concentration and flux from several active faults in the capital area of China have been carried out. The highest CO₂ concentration and flux were 9.5 vol % and 274.3 g m⁻² d⁻¹, respectively. The total output of CO₂ from nine faults in the west of the capital area of China was 2.0 Mt, which was twice as that from the rupture zones produced by Wenchuan Ms 8.0 earthquake in western Sichuan, China (Li et al., 2013, 2018). Further information about CO₂ degassing and tectonic activities has been published by Sun et al. (2017), Wang et al. (2017), and Yang et al. (2018). Nevertheless, the origin of the soil gas CO₂, the spatial and temporal variations of CO₂ from the active faults in the capital area of China and their mechanism, are still unknown. In the present study, we at first time investigated the origins of CO₂ collected from the soil wells along the active faults in the capital area of China, analyzed the spatial and temporal variations of CO₂ degassing and their mechanism, and discussed the possible relation between soil gas CO₂ emission and tectonic activities.

2. Geological setting

The capital area is in the north of northern China and belongs to the Trans-North China Block and Eastern Block (Fig. 1). The tectonic setting in the area is complex, demarcated by the Taihangshan piedmont fault zone, the basin and range tectonics zone are distributed to the west, with the Bohai Bay basin to the east (Xu, 2002). In total, 21 active faults oriented in the NE-SW direction occur in the area, with 12 normal faults stretching to the west of Beijing, and the other nine strike-slip ones to the east. The study area is historically seismically active. 18 great earthquakes (Ms > 6.0) have occurred in the area since 1618, for instance, the Sanhe-Pinggu earthquake (Ms = 8.0) in 1679 along the Xiadian fault zone, the Tangshan earthquake (Ms = 7.8) in 1976 along the Tangshan fault zone, followed by four aftershocks with magnitudes higher than 6.0. 11 hot springs with free gasses occur along the active fault zones in the capital area of China, the 6 ones in the orogen regions locate in effusive rocks and metamorphic rocks, and the others in the basin regions locate in the Quaternary sediments (Zhang et al., 2016; Li et al., 2018).

3. Methods

3.1. Gas measurement and sampling in the field

Based on the previous studies (Li et al., 2013, 2018; Sun et al., 2017; Wang et al., 2017; Yang et al., 2018), 26 sites were selected for soil gas well construction in November 2017 (Fig. 1) considering the following factors: (1) a location with higher CO₂ concentration than the background; (2) a location in the fault zone; and (3) a location with a distance exceeding 2.0 km from farmland, residential area and forest, to avert the effects due to microbial degradation of organic material and root respiration (Hoke et al., 2000; Gong et al., 2012; Tamir et al., 2012; Thomazini et al., 2016). Within one month after the site selection, construction of the soil gas wells was finished. An inverted PTFE circular accumulation hemispherical chamber with a volume of 1.7 × 10⁻³ m³ and a radius of 0.2 m was fixed 5.0 m below the ground for each soil gas well. A 6-channel de-concentrator was installed on the inner wall of the chamber to re-inject the circulating gas in order to ensure the immediate and homogeneous mixture of gas in the chamber. Two exhaust tubes (PTFE, 5.0 m in length, 10 cm in diameter) were used, with their lower ends connected to the top of the chamber and their other ends connected to the inlet and outlet of the detector. This device formed a closed circuit for the soil gas (Fig. 2). Before CO₂ flux measurement, the chamber was purged by air injection through one of the two exhaust tubes, by an air pump with a flow rate of 15 L/min, meanwhile, continual monitoring for CO₂ concentration in the chamber was performed with the CO₂ monitor connected to the other tube, and the flux measurement was carried out until the CO₂ concentration in the chamber decreased to the atmospheric CO₂ concentration. Soil gas measurements were performed repeatedly in the field at the end of each month from July to November 2018 and April 2019. The CO₂ concentration and flux were measured by
a portable infrared CO₂ monitor (GXH-3010-E, for CO₂ concentration). The detection limit and measurement error of the GXH 3010-E CO₂ monitor was 0.01 vol % and ±2 vol %, respectively. An inlet filter was used to protect the detector from dust. The end connected to the outlet of the apparatus was plugged by a ball valve immediately after soil gas measurement.

Gas samples were collected by placing a cylindrical glass bottle (500 ml in volume, 0.5 cm in thickness, made of soda-lime glass) upside down. For the spring gas sampling, the glass bottle was pre-filled with spring water attained from each sampling site and connected with a rubber tube to an inverted funnel fully sunk in the spring (Zhang et al., 2016). For the soil-gas well sampling, the glass bottle was pre-filled with saturated brine and connected with a rubber tube to the outlet of the apparatus. Gas released from the springs and soil gas wells went through the tube and filled the soda-lime bottle by replacing the water inside, which was then sealed with solid trapezoidal rubber plugs and adhesive plaster on-site (Du et al., 2006; Dai et al., 2012). Three bottles of gas were collected in September 2018 and analyzed for He concentration and isotopic composition of CO₂ (Chen et al., 2018).

3.2. Laboratory analysis

The He concentrations of soil gas were measured by an Agilent 3000 Micro GC with an error of ±5%. The carbon isotope δ¹³C₀₂ (V-PDB) values were determined by the MAT 253 plus stable isotope ratio mass spectrometer with uncertainties of ±0.3‰ in the Analytical Laboratory Beijing Research Institute of Uranium Geology. Analysis of all samples was completed within ten days of sampling.

4. Results

Twenty-six gas samples from the soil gas wells and 11 gas samples from the springs were collected in the field (Fig. 1). The CO₂ concentration and flux and their standard deviation, δ¹³C₀₂ (V-PDB), O₂ and He concentrations of gas samples from the soil gas wells were listed in Table S (Supplementary Material), and the CO₂ and He concentrations, δ¹³C₀₂ (V-PDB), ³He/²⁰Ne (R/Ra), Rc/Ra, Heₘ and ⁴He/²⁰Ne of 11 spring gas samples were listed in Table 1.

The CO₂ concentration and flux obtained at the 26 soil gas wells were in the ranges of 0.1–11.4 vol % and 1.7–191.5 g m⁻² d⁻¹, respectively, with the standard deviation ranging from 0.0 to 2.4 vol %, 1.0–44.7 g m⁻² d⁻¹, respectively, the O₂ concentration and He concentration were in the range of 3.2–20.2 vol % and 4.9–11.5 ppm, respectively, and the δ¹³C₀₂ (V-PDB) varied from −20.9 to −18.0‰ (Table S).

The CO₂ and He concentrations of the 11 spring gas samples were in the ranges of 0.5–11.3 vol % and 574.0–4139.8 ppm, and the δ¹³C₀₂ (V-PDB), ³He/²⁰Ne (R/Ra), Rc/Ra, ⁴He/²⁰Ne were in the ranges of −15.6 ~ −8.9‰, 0.1–2.5, 0.1–2.5 and 17.8–185.5, respectively, the Heₘ was in the range of 1.0–31.4 vol% (Table 1).

Rc/Ra is the air-corrected ³He/²⁰Ne ratio calculated using the method: Rc/Ra = [(R/Ra) × X - 1]/(X - 1), X = [(³He/²⁰Ne)measured/(³He/²⁰Ne)air] × βNe/βHe. β is the Bunsen solubility coefficient, which is the volume of gas absorbed per volume of water at the measured temperature when the partial pressure of the gas is 1 atm (Weiss, 1971), assuming a recharge temperature of 15 °C. βNe/βHe = 1.21 at 15 °C. Heₘ is the mantle helium contribution of the total helium contents using the methods: Rc/Ra = (R/Ra)crust × (1 - Heₘ) + (R/Ra)mantle × Heₘ, (R/Ra)mantle = 8 (Graham, 2002), (R/Ra)crust = 0.02 (Andrews, 1985).

5. Discussion

5.1. Sources of CO₂ emitted from the soil gas wells

δ¹³C₀₂ (V-PDB) vs. 1/CO₂, ³He/⁴He (R/Ra) vs. ⁴He/²⁰Ne are regarded to be indicators for gas sources regions (Sano and Marty, 1995; Hernández et al., 2003; Dogan et al., 2009; Yuce et al., 2017). Typical end-members for δ¹³C₀₂ of mantle and crust are −6.5‰ (vs. V-PDB) (Sano and Marty, 1995) and 0‰ (vs. V-PDB), respectively (Zhang et al., 2016), while for atmospheric and biogenic end members are −7‰ (vs. V-PDB) and −25‰ (vs. V-PDB), respectively (Dai, 1995; Dogan et al., 2009). Typical end-members of ³He/⁴He for mantle, crust, and air are 1.1–1.4 × 10⁻⁵, 2 × 10⁻⁸ and 1.4 × 10⁻⁹, respectively (Ozima and Yamashita, 1997).
Podosek, 1983), and those of 4He/20Ne for the mantle, crust and air are 1000, 1000 and 0.285, respectively (Hoke et al., 2000).

Fig. 3 shows as the He of the spring gases is a mixture of mantle and crust He with little air contamination for the spring gases, which could be taken as evidence for the presence of mantle-derived fluids entrained upward by the hydrologic system (Ballentine et al., 2002). Based on the simple crustal-mantle mixing model (Zhang et al., 2016), the mantle He contributions were calculated to be 1.0% ~ 31.4% (Table 1), while the crust the remaining. These spring gases could convey upward surface relevant signals from the deep earth. The P-wave velocity and S-wave velocity images indicate the existence of low-velocity bodies in the crust, accompanied by the uplift of the crust-mantle boundary and lateral variations of the upper mantle velocity structure, suggesting the up-welling and intrusion of upper mantle fluids (Huang and Zhao, 2004; Wang et al., 2009). The upper mantle fluids migrate upward through the faults along which the springs occur, and intrude into the springs (Dogan et al., 2009; Fu et al., 2017), resulting in the high Rc/Ra (0.1 ~ 1000, 1000 and 0.285, respectively (Hoke et al., 2000).

In the 3He/4He vs.1/CO$_{2}$ diagram, the soil gas samples and spring gas samples plotted within the composition mixing range between the Deep (M + C) end-member and biogenic end-member, while the soil gas samples plotted between the biogenic end-member and the spring gas samples (Fig. 4), this further indicate that the Deep (M + C) end-member and biogenic end-member should be the two potential CO$_{2}$ sources for both of the spring gas and soil gas, and the spring gas could be the secondary source for the soil gas, which played a role as the carrier of the deep volatile and transferred it to the shallower soil gas. CO$_{2}$ of the soil gas plotted closer to the biogenic end-member, which suggested that the oxidation of organic matter during aerobic microbial respiration should have played the most important role in CO$_{2}$ production in the soil gas, and the concentrated distribution of the O$_{2}$ and CO$_{2}$ concentrations from the soil gas wells along the line (Y = - X) provided another further evidence (Fig. 5), and the process was represented as following (Romanak et al., 2012):

$$\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$$

Applying the 3He/4He values for mantle (~6.5%), crust (0%) and biogenic (~25%) end-member (Dai, 1995; Sano and Marty, 1995; Dogan et al., 2009; Melian et al., 2014; Zhang et al., 2016), respectively, the biogenic CO$_{2}$ contributions for the spring gases were calculated to be between 12.0~62.4%, while for the soil gases to be in the range of 64.3~83.6%, which could suggest that mantle and crust CO$_{2}$ should be the main sources for the CO$_{2}$ from the spring gases, resulting in the higher 3He/4He (~15.6 ~ 8.9%) and He concentrations (574.0~4139.8 ppm), while biogenic CO$_{2}$ should be the main contributor to the CO$_{2}$ in the soil gases with lower 3He/4He values (~20.9 ~ 18.0%) and He concentrations (4.9~11.5 ppm) (Tables S and 1).

In addition, a noticeable difference was observed between CO$_{2}$ from the gas wells along the active faults in the orogen region and those in the basin region in the 3He/4He vs.1/CO$_{2}$ diagram (Fig. 4), CO$_{2}$ from the soil gas wells in the basin region plotted along the mixing line between the biogenic end-member and deep (C + M) end-member, while those in the orogen region plotted along the mixing line between the biogenic end-member and air end-member, and with the O$_{2}$ concentrations deviating from the line (Y = - X) upward (Fig. 5), indicating the contamination of the air for CO$_{2}$ from the soil gas wells along the active faults in the orogen region. Most of the faults in the basin region along which the soil gas wells distributed are blind strike-slip faults lurking under the thick clay cover strata with the thickness up to 1000 m, while all of the faults in the orogen region are normal fault cutting the surface (Xu, 2002, 2015). Previous research indicated that the air could intrude into the earth through the high permeability fracture in the fault zone at a velocity of 10 m/d, subjecting to the barometric pressure fluctuation, with the largest depth up to 300 m (Auer et al., 1996; Illman and Neuman, 2001; Parker, 2003). Therefore, it could be inferred that the air had intruded into the soil gas wells in the orogen region through the faults that cut the surface, owing to the barometric pressure fluctuation, and resulting in the distinctive distribution of CO$_{2}$ along the mixing line between the biogenic end-member and air end-member in the 3He/4He vs.1/CO$_{2}$ diagram (Fig. 4).

Based on the above results, the conceptual model for the sources and migration of CO$_{2}$ in the active fault zones in the capital area of China was summarized as that in Fig. 6. The crust-derived and mantle-derived fluids accumulating in the lower crust and upper mantle ascended through the deep-cut faults along which the springs occur, and intruded into the springs, while with minor crust-derived and mantle-derived gas diffusing into the soil gas wells. Although biogenic CO$_{2}$ was the main source for the soil gas wells in the study area, crust-derived and mantle-

Table 1

<table>
<thead>
<tr>
<th>Spring</th>
<th>CO$_{2}$ concentration (%)</th>
<th>3He/CO$_{2}$ (‰)</th>
<th>He (ppm)</th>
<th>R/Ra</th>
<th>Rc/Ra</th>
<th>H$_{2}$O (%)</th>
<th>3He/20Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZQ</td>
<td>0.6</td>
<td>-15.6</td>
<td>2075.1</td>
<td>0.4</td>
<td>0.4</td>
<td>5.0</td>
<td>85.4</td>
</tr>
<tr>
<td>JYWQ</td>
<td>3.5</td>
<td>-12.3</td>
<td>2288.4</td>
<td>2.5</td>
<td>2.5</td>
<td>31.4</td>
<td>96.1</td>
</tr>
<tr>
<td>YYBG</td>
<td>1.3</td>
<td>-13.9</td>
<td>2853.0</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>185.5</td>
</tr>
<tr>
<td>SSSZ</td>
<td>1.4</td>
<td>-13.8</td>
<td>1835.2</td>
<td>1.0</td>
<td>1.0</td>
<td>12.5</td>
<td>149.3</td>
</tr>
<tr>
<td>SY</td>
<td>0.5</td>
<td>-11.9</td>
<td>718.4</td>
<td>2.4</td>
<td>2.4</td>
<td>30.1</td>
<td>63.2</td>
</tr>
<tr>
<td>WLY</td>
<td>1.0</td>
<td>-13.3</td>
<td>669.6</td>
<td>2.0</td>
<td>2.0</td>
<td>25.3</td>
<td>28.8</td>
</tr>
<tr>
<td>DWQ</td>
<td>1.1</td>
<td>-11.2</td>
<td>1437.5</td>
<td>0.2</td>
<td>0.2</td>
<td>2.2</td>
<td>82.5</td>
</tr>
<tr>
<td>WSJ</td>
<td>11.3</td>
<td>-8.9</td>
<td>4139.8</td>
<td>0.5</td>
<td>0.5</td>
<td>5.9</td>
<td>44.5</td>
</tr>
<tr>
<td>DWQ</td>
<td>7.7</td>
<td>-11.1</td>
<td>616.9</td>
<td>0.5</td>
<td>0.5</td>
<td>5.8</td>
<td>85.6</td>
</tr>
<tr>
<td>ZGST</td>
<td>1.7</td>
<td>-9.8</td>
<td>574.0</td>
<td>0.5</td>
<td>0.5</td>
<td>5.6</td>
<td>17.8</td>
</tr>
<tr>
<td>HSW</td>
<td>1.5</td>
<td>-11.2</td>
<td>673.8</td>
<td>0.5</td>
<td>0.5</td>
<td>6.5</td>
<td>20.7</td>
</tr>
</tbody>
</table>

R/Ra is the measured 3He/4He ratio in the samples divided by that of air (Ra = 1.4 × 10$^{-6}$).
derived CO$_2$ could be the secondary sources. In addition, the air should have intruded into the soil gas wells in the orogen region through the faults that cut the surface, owing to the barometric pressure fluctuation.

5.2. Variations of CO$_2$ emitted from the soil gas wells

5.2.1. Spatial variations of CO$_2$ emitted from the soil gas wells

Great spatial variation of CO$_2$ concentration and flux were observed in the soil gas wells along the active fault zones in the capital area of China (Fig. 7). High CO$_2$ concentration and flux were observed in the soil gas wells along the active fault zones in the basin region, with the concentration and flux in the range of 1.0–11.4 vol % and 16.3–191.5 g m$^{-2}$ d$^{-1}$, respectively, which were much more higher than those in the orogen region, with the concentration and flux in the range of 0.1–1.8 vol % and 1.7–29.6 g m$^{-2}$ d$^{-1}$, respectively, and the He concentrations were higher in the basin region too (Table S).

As being discussed above, the biogenic CO$_2$ was the main source for CO$_2$ from the soil gas wells along the fault zones in both the basin and orogen regions. In the O$_2$ concentrations vs. CO$_2$ concentrations diagram (Fig. 5), the gas samples from the soil gas wells in the basin region showed higher CO$_2$ concentration and lower O$_2$ concentration than those in the orogen region, which could indicate that more CO$_2$ should have been produced during the procedure of oxidation of organic matter during aerobic microbial respiration in the basin region, where the organic matter accumulates in the thick clay cover strata. Furthermore, carbonates are widely distributed in the geological formations (Xu, 2002; Feng, 2013; Yu et al., 2014), which should be another significant source for the CO$_2$ from the soil gas wells along the fault zones in the basin region, due to water-carbonate interaction, as Eq. (2) (Rovira and Vallejo, 2008; Tamir et al., 2011; Chen et al., 2015), while the air had intruded into the soil gas wells in the orogen region through the faults that cut the surface, owing to the barometric pressure fluctuation; these two factors should also take the responsibility for the great spatial variations of CO$_2$ concentration and flux observed between the CO$_2$ from the soil gas wells in the basin region and that in the orogen region. In addition, relative high He concentrations (9.2–11.5 ppm) were observed in the soil gas wells GLY, DDG, QXZ in the basin region, together with relative high CO$_2$ concentrations and fluxes (Table S, Fig. 7), which indicated the slightly more contribution of the Deep (M + C) end-member for the soil gas wells GLY, DDG, QXZ than others in the basin region. However, probably a low amount contribution of deep gas was not able to significantly change the δ^{13}C$_{CO_2}$, but it could accelerate the rate of CO$_2$ transport in the fault zone.

$$\text{CaCO}_3 + 2\text{H}^+ \leftrightarrow \text{Ca}^{2+} + \text{CO}_2(\text{gas}) + \text{H}_2\text{O}$$

(2)

5.2.2. Temporal variations of concentration and flux of CO$_2$ emitted from the soil gas wells

Temporal variations of soil gas CO$_2$ concentration and flux are primarily controlled by meteorological, biological and tectonic factors (Wood et al., 1993; Toutain and Baubron, 1999; Fu et al., 2017; Chen
et al., 2019; Camarda et al., 2019). In our study, the CO
2 concentration and flux of the gas from the soil gas wells were observed in spring (April 2019), summer (July and August 2018), autumn (September and October 2018) and winter (November 2018) (Table S). However, the temporal variations of CO
2 concentration and flux could be random (Fig. 8), which were different from the regular seasonal variations (summer > autumn > winter > spring) proposed in the previous researches (Reardon et al., 1979; Greco and Baldocchi, 1996; Yakut et al., 2016). The capital area in the north of China is an arid and semi-arid area, the climate is characterized by long and cold winter with the absence of precipitation (Wei et al., 2008) (Fig. 8). Furthermore, to reduce the effect of meteorological and biological factors on soil CO
2 concentration and flux investigations, the chambers of the soil gas wells were fixed 5.0 m below the ground. At this depth, the seasonal effect on the biological activity and soil CO
2 had been proved to be negligible (Reardon et al., 1979; Wood et al., 1993), moreover, all of the soil gas wells were built far from the cropland and trees, therefore, the meteorological, biological factors should have little effect on the temporal variations of CO
2 concentration and flux in the soil gas wells in the active fault zones in the capital area of China.

In addition, the temporal variations of soil gas CO
2 concentration and flux showed significant differences between the soil gas wells in the basin region and those in the orogen region. Jumplify temporal variations of CO
2 concentration and flux were observed in the soil gas wells in the basin region, with the standard deviation for CO
2 concentration and flux in the range of 0.4–2.4 vol % and 5.8–44.7 g m
–2 d
–1, respectively, while the temporal variations of soil gas CO
2 concentration and flux were slight in the orogen region, with the standard deviation for CO
2 concentration and flux in the range of 0.0–0.4 vol % and 1.0–6.3 g m
–2 d
–1, respectively (Fig. 7), however, the meteorological parameters (atmospheric pressure, rainfall, and temperature) were similar for the orogen region and basin region (Fig. 9), which gave the further evidence for the insignificant impact of the meteorological, biological factors on the temporal variations of CO
2 concentration and flux in the soil gas wells in the active fault zones in the capital area of China, and the significant role of the tectonic factor had been highlighted inversely.

From July 2018 to April 2019, 17 earthquakes with magnitudes of 2.0–4.0 occurred in the study area (http://news.ceic.ac.cn), with 16 of the earthquakes occurred in the basin region, including 3 earthquakes with magnitudes of 3.0–3.9, and 14 earthquakes with magnitudes of 2.0–2.9, while only 1 earthquakes with magnitudes of 2.8 occurred in the orogen region (Fig. 7). It may be inferred that faulting activity is more effective in the basin region than in the orogen region, and that the more intense seismic activity could play an important role in the jumplify temporal variations of CO
2 concentration and flux in gas from the soil gas wells in the basin region. These degassing features can be found in a great part of geologic extensional contexts, as evidenced by Tamburello et al. (2018). Eventual fluctuation during time of deep originated CO
2 emission may be attributed to tectonic activity (e.g. Irwin and Barnes, 1980). Possible precursory characters of CO
2 degassing activity in extensional areas characterized by enhanced crustal permeability have been discussed by Martinelli and Dadomo (2017). Thus, this kind of geochemical prospection activities could be applied, in principle, in a great part of CO
2 degassing areas of the world. Therefore, the implementation of soil gas CO
2 concentrations and fluxes measurements in active fault zones for tectonic activity monitoring in researches oriented to possible earthquake forecasting could be envisaged.
6. Conclusions

Based on the chemical and isotopic characteristics of the collected gas samples from the soil gas wells and springs, the origin of CO$_2$ from the soil wells in the active fault zones in the capital area of China was analyzed, and the mechanisms for the spatial and temporal variations of CO$_2$ emission from the active fault zones were discussed. The main conclusions are:

(1) The biogenic CO$_2$ is the primary source for the CO$_2$ from the soil gas wells in both the basin and orogen regions, a few crust-derived and mantle-derived CO$_2$ could have ascended through the deep-cut faults along which the springs occur, and diffused into the soil gas wells. Owing to the barometric pressure fluctuation, minor air should have intruded into the soil gas wells in the orogen region through the faults which cut the surface. (2) The He concentration, CO$_2$ concentration and flux of soil gas from the wells in the basin region are much more higher than those in the orogen region, which can be attributed to the higher CO$_2$ amount produced during the process of oxidation of organic matter during aerobic microbial respiration in the basin region, where organic matter accumulates in the thick clay cover strata. Other two secondary CO$_2$ sources are represented by interactions between groundwaters and carbonates widely distributed in geological formations of the basin region and by air into the soil gas wells in the orogen region through the faults that cut the surface, due to the barometric pressure fluctuation.

Fig. 7. Relationship between variations of He concentration, CO$_2$ concentration and flux in the soil gas wells and earthquakes.
(3) Jumpily temporal variations of CO$_2$ concentration and flux were observed in the soil gas wells in the basin region, while the temporal variations of soil gas CO$_2$ concentration and flux were slight in the orogen region, which indicate that the more intense fault activity in the basin region than in the orogen region, and the more frequent seismic activity could play an important role in triggering the jumpily temporal variations of CO$_2$ concentration and flux in gas from the soil gas wells in the basin region. Therefore, the concentrations and fluxes of soil gas CO$_2$ in the active fault zones could be considered as preferential parameters for tectonic activity monitoring in researches oriented to possible earthquake forecasting.

Data availability statement

The data for this paper are available in the text.

Declaration of competing interest

The authors declare that they have no conflicts of interest.
Acknowledgements

The authors are grateful to Prof. Guodong Zheng and Liwu Li for analyzing the Gas compositions and isotopic data (Institute of Geology and Geophysics, Chinese Academy of Sciences). This study is jointly supported by the Basic Science Research Plan of the Institute of Earthquake Science, China Earthquake Administration (Nos. 2019IEF07032, 2016IES0102 and 20150112), the Natural Science Foundation of China (Nos. 41402298, 41573121 and 41503114).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apgeochem.2019.104489.

References

