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The temporal dynamics of vegetation biomass are of key impor-
tance for evaluating the sustainability of arid and semiarid ecosys-
tems. In these ecosystems, biomass and soil moisture are cou-
pled stochastic variables externally driven, mainly, by the rainfall
dynamics. Based on long-term field observations in northwestern
(NW) China, we test a recently developed analytical scheme for
the description of the leaf biomass dynamics undergoing seasonal
cycles with different rainfall characteristics. The probabilistic char-
acterization of such dynamics agrees remarkably well with the
field measurements, providing a tool to forecast the changes to
be expected in biomass for arid and semiarid ecosystems under
climate change conditions. These changes will depend—for each
season—on the forecasted rate of rainy days, mean depth of rain
in a rainy day, and duration of the season. For the site in NW
China, the current scenario of an increase of 10% in rate of rainy
days, 10% in mean rain depth in a rainy day, and no change in
the season duration leads to forecasted increases in mean leaf
biomass near 25% in both seasons.

ecohydrology | stochastic dynamics | vegetation modeling | climate change
impacts | soil moisture

In arid and semiarid ecosystems, successful use of limited water
resources is of central importance in determining the evolution-

ary trends of vegetation. Soil moisture there is the principal lim-
iting factor for vegetation restoration and plays a key role in con-
trolling the spatiotemporal patterns of vegetation regulating the
complex dynamics of the climate–soil–vegetation system (1, 2).

Characterizing the vegetation in water-limited ecosystems,
with regard to quantity, species composition, and stability, is
a long-standing problem in restoration ecology (3). Field sur-
veys and different types of measurements have been taken for
decades (4), but they have mostly yielded only descriptive results
[e.g., links between soil moisture and accompanying biomass (5)].

Schaffer et al. (3) recently developed an analytical descrip-
tion of the transient joint behavior of plant biomass and soil
moisture induced by stochastic rainfall dynamics. These analyt-
ical results allow for predictions of ecosystem behavior under
changing climate conditions and also illuminate the sensitivities
of the dynamics to plant physiology, as well as to climate and
soil characteristics that govern the system. The objective of this
study is first to test the accuracy of the analytical model under
current conditions by comparing its predicted distribution for the
biomass density in both the wet and dry seasons with the statistics
observed in a long-term field experiment in northwestern (NW)
China. Subsequently, using the climate change forecast of the
field site, predictions will be made for the seasonal mean biomass
and its variability in the future.

Ecosystem Characteristics: Climate, Soil, and Vegetation
Long-term detailed measurements of vegetation dynamics were
carried out at the plant level in four plots located at the Shapotou
Desert Research and Experiment Station in NW China. Meteo-
rological 60-y records at the station provide an adequate charac-
terization of the rainfall dynamics at the site. The mean annual

rainfall is 182.6 mm, of which 82% falls in the rainy season (May
1–September 30) with an observed range between 60 mm and
270 mm and a SD of 57.1 mm. The mean rainfall during the wet
season is 149.1 mm and during the dry season is 33.5 mm, with
SDs of 51.5 mm and 16.9 mm, respectively.

The arrival of rainfall events is modeled as a Poisson process
in which the rate λ0 (d−1) is constant over the course of a sea-
son, but varies between seasons. After accounting for intercep-
tion (which acts as a censoring process), the rainfall arrival rate
is transformed into the infiltration arrival rate λ (2); λ inherits
the seasonal characteristics of λ0, namely constant intraseason
and variable interseason values.

The temporal structure within each rainfall event is ignored,
with all water modeled as arriving in an instantaneous pulse with
random depth. For values of the arrival rate typical of water-
limited systems (such as those here), it will be rare for such a
process to produce multiple arrivals in a given day, and so the
continuous-in-time Poisson process can be correctly understood
at the discrete daily scale. In this case, λ0 (d−1) represents the
probability of having rain on a given day, and the distribution of
rain depth during a pulse arrival is equivalent to the distribution
of rain depth on any rainy day (6); in particular, this distribution
is taken to be exponential with mean a (2). The fluctuations of
λ0 and a for both seasons at the site for the period 1956–2015
are shown in Fig. S1.

A detailed description of the field site, its climate, soil, and veg-
etation is given in Field Site and Vegetation. Based on the analysis
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Fig. 1. (Top) An overview of the site and its vegetation. (Bottom) The shrub
A. ordosica, which is the dominant vegetation type.

of the meteorological data, the mean rainfall arrival rate, λ0, in
the wet season is 0.231 d−1. For the dry season it is 0.073 d−1.
The mean daily rainfall depth for a wet day in the wet season is
4.2 mm, and for the dry season it is 2.1 mm (Table S1).

The dominant vegetation is the drought-tolerant shrub
Artemisia ordosica; photographs of the broader site and this
shrub in particular are shown in Fig. 1. Field measurements to
estimate the biomass at the end of each season as well as the
different plant and soil parameters needed in the analytical com-
putations are described in Methods. The values of the climate,
soil, and plant parameters are reported in Tables S1 and S2.

The Theoretical Model. The temporal evolution of vegetation
biomass per canopy area B may be described by the differential
equation

Ḃ = (αη − β)B , [1]

where β is the per-unit biomass loss rate, α is the non–water-
limited per-unit assimilation rate, and η is an inhibition function
that captures the dependence on water availability for transpi-
ration and assimilation, both modulated by the stomata. In our
previous work (3, 7), B has denoted various plant tissue types,
but here we are modeling only the leaf component of the vegeta-
tion. (Details on the derivation of these dynamics, especially the
resolution of and interaction between different tissue types, are
given in Theoretical Model.) This equation requires a description

of the dynamics of water availability for closure, which are pro-
vided specifically by a water balance equation for the root zone
of the vegetation:

Ar n Zr
dS

dt
= −Em ρ ηAc B + Ar I . [2]

The left-hand side above gives the rate of change of the water vol-
ume in the soil. Ar is the root coverage area (i.e., the amount of
land surface area with roots beneath it) within the measurement
plot, n is the soil porosity, and Zr is the rooting depth, so that
the product Ar n Zr is the pore space volume available to store
water in the root zone; and S , the relative moisture content, is
the fraction actually occupied by water. On the right-hand side,
the depth of rain entering the soil per unit time I is multiplied
by the root area to give the volumetric input; output (i.e., loss)
Em ρ ηAc B represents transpiration: The weight of leaf biomass
per canopy area B is multiplied by the canopy area of the plot Ac

to give the total leaf weight in the plot; this in turn is multiplied
by the leaf area per weight constant ρ to give the total plot leaf
area; the result is multiplied by the transpiration rate per unit leaf
area, given as a maximum rate Em times the same water limita-
tion factor η that appears in the assimilation rate, which we now
write explicitly as a function of soil moisture η(S), as in Eq. S28.
Rearranging yields

Ḃ = (αη(S)− β)B [3]

Ṡ = −γBη(S) + I , [4]

where γ= (Ac/Ar )(Emρ/nZr ) and I is given as units of soil stor-
age fraction per time. The values for the derived parameters are
given in Table 1. The stochasticity of this infiltration process, with
arrival rate λ and a rescaled mean infiltration depth 1/θ (again,
expressed as a fraction of the root zone water storage volume),
induces a probability density function (pdf) on the biomass–soil
moisture state space.

Schaffer et al. (3) showed that for constant rainfall parameters
this system allowed for an exact, closed-form steady-state pdf,
but also, in recognition of the fact that convergence to this state
might take longer than the length of a typical (constant param-
eter) season, derived an approximation of the system’s tran-
sient behavior. This approximation exploits the fact that biomass
varies on a much slower timescale than soil moisture, so that
changes in biomass on an interval of interest (such as a season)
involve an integration that tends to average out the soil moisture
fluctuations in that interval, allowing for a simple estimation of
the marginal pdf of biomass. Formally, this estimate is obtained
by setting Ṡ = 0 in the above system, and substituting the soil
moisture equation into the biomass equation yields

Ḃ =
α

γ
I − βB [5]

so that each unit of infiltrating water is converted immediately
to biomass (hence the name given in ref. 3, “no-storage limit”)

Table 1. Values of the reduced plant, soil, and climate parameters
needed to specify the joint dynamics in Eqs. 3 and 4 and the “no
storage” dynamics in Eq. 5 and appearing also in Eqs. 6 and 7

Parameters Units Values

α d−1 0.0196
β d−1 0.0071
γ m2·g−1·d−1 4.44× 10−5

sw m0 0.02
s∗ m0 0.099
λ d−1 0.182 (wet), 0.045 (dry)
1/θ m0 0.022 (wet), 0.011 (dry)
T d 153 (wet), 212 (dry)
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with the conversion ratio—essentially a water use efficiency—of
α/γ. This single equation is obtained exactly in the parameter
limit where (for given efficiency) the transpiration and assimila-
tion coefficients in the system of Eqs. 3 and 4 are taken to be
arbitrarily large, and so it can be considered merely as a simpli-
fied, albeit convenient, governing equation for a subset of the
parameter space, which is largely how it was discussed in ref. 3.
However, this limit has an alternate (and more meaningful)
interpretation. The biomass dynamics certainly depend on the
availability of water, which may be characterized by the average
root zone soil moisture S as in Eq. 3; this assumes that the tran-
spiration does not depend on the distribution of moisture, so that
a single hydrological state variable is sufficient, and the system is
closed using the water balance Eq. 4 as discussed. An alterna-
tive approach is to note that, for the given (constant) water-to-
biomass conversion ratio, each storm represents an injection of
potential biomass, and the problem is to determine the amount
of it that will be realized and when. The amount is determined by
the assumption that, postinterception, all water infiltrating the
root zone will be transpired, which is equivalent to saying that
transpiration dominates leakage and evaporation within the root
zone. The timing of this transpiration is assumed instantaneous,
which reflects the fast nature of the soil moisture variations rel-
ative to those of the biomass. These two assumptions allow the
dynamics to be resolved by a single state variable as in Eq. 5,
without assumptions on the distribution of the root zone soil
moisture. Thus, Eq. 5 represents not just a simplification of the
two-state-variable model, but also an alternate closure condition.
The theory for the underlying dynamics is further elaborated in
Theoretical Model.

Analysis
Comparison of Field Measurements with Analytical Results. The
modeling approach described above is used to examine the
biomass response to an alternating regime of wet and dry sea-
sons, as found at the study site. Schaffer et al. (3) showed that
for typical dryland parameter values, the end-of-season biomass
would be significantly different from that of the constant-
parameter steady state (a similar calculation is performed in ref.
8). The system did not have time to adjust to a given season
before it ended and the wet–dry cycle started over again. This
was also confirmed for the site specifically (Fig. S2). Thus, it is
the transient results of ref. 3, corresponding to Eq. 5, that form
the departure point for the analysis here.

The equations describing the pdfs of biomass at any particular
time in a wet or dry season and after a given number of consec-
utive seasonal–annual cycles have taken place are given in Eqs.
S18–S21 and plotted in Fig. 2 for the site.

After infinitely many such cycles, the system will have con-
verged to a “seasonal” steady state, where the statistics depend
on the point in the year at which measurements are made (i.e.,
end of wet season, end of dry season), but not on the year in ques-
tion. Fig. 2 also addresses the question, How long does it take
for the seasonal regime to establish itself? This will necessarily
depend on the initial state, because a more extreme state will
persist for a longer time, but the steady-state distribution pro-
vides a useful baseline. To be explicit, suppose the system were
exposed to wet (or dry) season conditions for an infinitely long
time, allowing it to equilibrate to a sort of upper (or lower) bound
on the vegetation state. How many dry–wet cycles will it take to
effectively converge from these reference levels? Explicit formu-
las for the convergence of the moments are given in ref. 3 and
in Eqs. S22–S24, but it is clear graphically from Fig. 2 that the
impact of the alternating regime is well established after about
3 y and so beyond this point the seasonal steady state can be
said to prevail. The mean and variance of the seasonal steady-
state distributions are especially informative and their analyti-
cal expressions are given here in Eqs. 6 and 7. The quantities
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Fig. 2. (A) The end of wet season biomass distribution under a regime of
alternating wet and dry seasons, starting at wet season steady state, and
with each ensuing year consisting of a dry season length of Td = 212 d (0.58
y) followed by a wet season of Tw = 153 d (0.42 y). These distributions cor-
respond to global times (in years) T ∈ [0, 1, 3, 5]. (B) The effect of the same
seasonal regime on the end of the dry season biomass, starting at the dry
season steady state, so that the distributions correspond to the global times
(in years), T = 0, 1 + Td , 3 + Td , 5 + Td .

p(·) = e−β(·)T(·) , (·) ∈ {d ,w , a} can be understood as decay fac-
tors, respectively per dry season, per wet season, and per annum,
indicating the tendency of each epoch to “wash out” information
about the biomass at its start. Note that if (e.g.,) the wet sea-
son length were taken to be infinitely long, the end-of-wet season
moments would be unaffected by dry season parameters, because
any influence initially provided by the dry season would be lost
over time:

µ{d,w} =
1

β

(
α

γ

)
×
(
λ{d,w}(1− p{d,w})/θ{d,w}+λ{w,d}p{d,w}(1−p{w,d})/θ{w,d}

1−pa

)
[6]

σ2
{d,w} =

1

β

(
α

γ

)2

×
(
λ{d,w}(1−p2

{d,w})/θ
2
{d,w}+λ{w,d}p

2
{d,w}(1−p2

{w,d})/θ
2
{w,d}

1−p2
a

)
.

[7]

Using the parameter values in Table 1, the analytical mean
and SD of leaf biomass (leaves, new shoots) per unit of
canopy area at the end of dry season and at the end of the
wet season are µd = 64.2 g·m−2, µw = 183.1 g·m−2 and σd =
15.5 g·m−2,σw = 45.6 g·m−2, respectively. The field measure-
ments of leaf biomass per unit canopy area at the end of wet
season are presented in Table S3 for each of the four plots used
in this study.

The mean and SD of the biomass at the end of the wet season
estimated using all four plots and their different years of mea-
surements are µw = 185.0 g·m−2 and σw = 37.6 g·m−2, which are
both remarkably close to those analytically predicted. (The esti-
mate of the variance is in fact a slight underprediction due to
the correlation between measurements made in successive years,
although this effect is largely negligible. See Methods for details.)
The slight overprediction of the variance is to be expected, as

E4946 | www.pnas.org/cgi/doi/10.1073/pnas.1703684114 Wang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684I.pdf?targetid=nameddest=eqs18
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684I.pdf?targetid=nameddest=eqs18
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684I.pdf?targetid=nameddest=eqs21
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684I.pdf?targetid=nameddest=eqs22
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684I.pdf?targetid=nameddest=eqs24
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703684114/-/DCSupplemental/pnas.201703684SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/cgi/doi/10.1073/pnas.1703684114


PN
A

S
PL

U
S

EC
O

LO
G

Y
EN

V
IR

O
N

M
EN

TA
L

SC
IE

N
CE

S

0 50 100 150 200 250 300 350 400 450 500
b (g/m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
B

(b
)

End of wet season biomass cdf

Analytical
Observed

Fig. 3. Comparison of the analytical cumulative distribution of end of
wet season biomass (seasonal steady state) with observed data at Shapotou
Desert Research and Experiment Station.

the no-storage model removes any temporal buffering effect the
soil might have on the rainfall process; a water storage capacity
within the plant tissues would also have a buffering, variance-
reducing effect not captured by our model. Fig. 3 compares the
cumulative distribution function of the leaf biomass data at the
end of the wet season with that resulting from the theoretical
distribution describing the seasonal steady state at that moment.
Again, there is a remarkable agreement between the theory and
the data.

There were no previous measurements of biomass at the end
of the dry season and thus we performed individual biomass
measurements in each of 22 well-established shrubs located in
a different 10-m× 10-m plot at the end of April 2016. The
observed results of leaf biomass per unit canopy area at the
end of the dry season are shown in Table S4. Because only a
single year of dry season data is available, we cannot compute
meaningful statistics or form the empirical distribution function.
Whereas there is some variability from shrub to shrub, this is
not attributable to random hydrological forcing, because each
shrub in a small spatial area such as the plot is driven by the
same rainfall process. Still, the single-year mean plot biomass
may be computed, resulting in µd = 68.4 g·m−2, which, per-
haps fortuitously, is quite close to the predicted value. Addi-
tionally, the interplant variability (which indicates both species-
inherent and spatial variability) can be compared with the
predicted variability induced by the intermittent rainfall model
to determine the relative size of these effects; in Methods, we
show specifically that interplant contribution to the total variance
is small.

The soil moisture was not a major focus of this study, and mea-
surements are not currently available, but because the method-
ology of ref. 3 provides for it (Eqs. S26–S29), as a final item we
compute the theoretical predictions of the soil moisture distri-
butions that correspond to the end of season biomass states dis-
cussed above. These are shown in Fig. 4. Both seasons are char-
acterized by very dry soils (with an overwhelming probability of
being at less than 20% saturation), although end of wet season
moisture content is higher. This is again indicative of the dif-
ference between the seasonal steady state and the “true” steady
state, because infinitely long seasons would balance the change
in rainfall with a change in transpiring biomass, resulting in the
same mean soil moisture for either season.

Impact of Climate Change on Biomass and Soil Moisture Dynamics.
The theoretical framework described above allows us to study
the impact of climate change on the leaf biomass dynamics aris-
ing from changes in the vegetation or climate characteristics. We
assume that the type of plants at the site under analysis remains
the same and that climate will follow the scenario described
in the recent study of Gao et al. (9), which finds a likely increase
in the total annual rainfall at the site between 10% and 25%. We
also assume that most of the impact on biomass will arise from
changes in the rainfall dynamics that in the modeling framework
are controlled by the rate of arrival of wet days in each season
(λ0), the mean rainfall depth in a rainy day in each season (a),
and the seasons durations (T). The climate scenario to be stud-
ied retains the same length of seasons and increases by 10% the
λ0 and the a values for each season. This leads to a total annual
rainfall of 219 mm, which is about 21% above the present condi-
tions and in the range found in the climate change study (9). The
interception loss is assumed the same (∆ = 1 mm). Many other
combinations of changes between λ0s, as, and Ts could also be
studied and this topic is being pursued for a number of regions
throughout the world. Fig. 5 shows the seasonal steady-state pdfs
for biomass at the end of the wet and dry seasons under the con-
ditions of the new climate scenario. They should be compared
with those in Fig. 2 describing the present conditions. The mean
values and SDs are now µw = 226.6 g·m−2, µd = 80.1 g·m−2 and
σw = 53.2 g·m−2, σd = 18.2 g·m−2. The steady-state pdfs for soil
moisture under the conditions of the above climate change sce-
nario experience very little change with respect to the present
ones shown in Fig. 4; the additional rainfall predicted under
climate change is largely offset—from the point of view of the
soil water balance—by the larger amount of transpiring vegeta-
tion. Thus, the first-order effects of climate change would be on
the vegetation, with the soil moisture experiencing second-order
effects.

Finally, we point out that these predictions ostensibly address
the biomass and soil moisture properties that would occur if the
climate change scenario prevailed in place of the current one. We
have not explicitly discussed the (temporally structured) tran-
sition from one regime to another, but in practice this distinc-
tion is of little consequence. The characteristic biomass adjust-
ment timescale is on the order of 1/β (with full adjustment
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Fig. 4. Seasonal steady-state pdf of relative soil moisture (x = s − sw ) for
wet and dry season conditions, under both the current and climate change
rainfall scenarios.
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Fig. 5. (A and B) Similar to Fig. 2 for a climate change scenario where
arrival rate of wet days and the mean rainfall depth in a rainy day have
increased 10% each in both seasons. These conditions yield an increase in
annual rainfall of 21%, which is in the range forecasted by the study of Gao
et al. (9).

even from a relatively extreme state occurring in <3 y, as in Fig.
2), whereas the climate is predicted to change on the decadal
scale, so the biomass at future times will tend to stay well
adjusted to the climate at those times; e.g., Eqs. 6 and 7 for the
mean and variance in a given year would be well determined
by using the parameters prevailing in that year, the longer his-
tory being “forgotten” by the biomass process before the cli-
mate could change very much. However, we may add the caveat
that the biomass considered here is the leaf biomass; the dynam-
ics of seed germination/new plant emergence and wood growth
might occur on timescales comparable to the climate change
timescale.

Discussion
The analytically derived mean and SD of leaf biomass at the end
of the wet season matches very closely with those measured in the
field. Our single year of dry season data are also consistent with
the data, although by itself it does not permit a good estimate of
the distribution. Moreover, the analytical cumulative distribution
of leaf biomass at the end of the wet season also agrees very well
with the long-term data. This close agreement gives confidence to
the values predicted under the climate change scenario studied
for the site. In the wetter conditions considered in the scenario
the mean biomass at the end of the wet season is 24% larger than
the present one. For the dry season the change in mean biomass
is 25%. The predicted increase in leaf biomass is thus very sig-
nificant and carries important consequences for the structure of
the ecosystem and for the future reforestation of other sites in
the region. The predicted increase in the SD of leaf biomass is
about 17% for each season and thus the coefficient of variation
is reduced by near 6% for each season.

The above predictions are assuming that the increase in total
rainfall results from an increase of 10% in both λ0 and a for both
seasons and that the duration of the seasons as well as the plant
characteristics remain the same. Other scenarios can also be stud-
ied. If one wished to study a scenario where λ0 and a remain the
same and the 21% forecasted increase in annual rainfall results
from an increase of 30.4% in the duration of the wet season,
the predicted biomass at the end of the wet or dry season would
be 205.0 g·m−2 and 84.3 g·m−2, respectively, which is quite dif-
ferent from that under the scenario considered here. This illus-

trates the importance of understanding the statistical structure
of the rainfall and not just its mean values. We emphasize that
this structure affects not only the shape of the biomass distribu-
tion (i.e., its higher-order moments), but also the mean biomass
value; the nonlinear, threshold-type nature of the interception
results in a greater fraction of water reaching the root zone when
the mean rainfall depth increases, so that the mean biomass
increases superlinearly (hence the 24% predicted increase with
a 21% increase in annual rainfall, as discussed in the previous
section).

Methods
Field Observations of the Desert Shrub Ecosystem. Four experimental plots of
10×10 m2—identified by the year when revegetation was initiated—were
studied in regard to their changes in plant biomass throughout the years.
The shrub canopy projection area was calculated by taking the longest and
shortest diameters through the center of the fullest part of the canopy.
The biomass per unit canopy projection area at the end of wet season is
calculated from a site-specific previously established empirical relationship
between leaf biomass and canopy projection area (10, 11). This character-
ization was carried out at the individual plant level for the four plots in
the years between 1981 and 1998. The percentage of the canopy coverage
over the total area of the plot is the sum of the canopy areas divided by
the plot area. No similar data were available for biomass at the end of the
dry season. Thus, a preliminary estimation was carried out in this case for
2016. The biomass at the end of the dry season of the year 2016 was esti-
mated by direct harvesting of one plot (10×10 m2) outside the long-term
vegetation-monitoring plots because such a harvesting method is prohib-
ited in those plots. With the measured leaf biomass and from the canopy
projection area we calculate the leaf biomass per unit area of canopy cov-
erage (10, 11). The measured biomass per unit canopy area and the canopy
coverage area at the end of the wet season for the period 1981–1998 are
given in Table S3 for all four plots. The corresponding values at the individ-
ual shrub level corresponding to the end of the dry season in 2016 are given
in Table S4.

The active root zone depth (Zr ) where over 90% of the roots are con-
tained was measured by ditches to a depth of 2 m with a width of 0.5 m
across the center area where the shrub grows. During this process obser-
vations were made of the root distribution. Saturated soil conductivity (Ks)
was obtained via in situ infiltration measurements through a tension disk
infiltrometer (12).

Canopy interception loss (∆ = 1 mm) was estimated as the difference
between open-field rainfall and throughfall (13).

The transpiration rate (E) and photosynthesis rate (Pn) were measured
on clear sunny days from the sunrise time at around 6 AM (local time) to
the sunset time around 7 PM at time intervals of 1 h. Each measurement
was taken on three mature shrubs. For each shrub, three labeled leaves
from the top, middle, and low canopy positions were selected under non–
water-limited conditions. Using a portable Li-6400 gas analysis system, the
uptake of CO2 of each labeled leaf was estimated (Li-Cor Inc.) and leaf area
of the labeled leaves was obtained using the Li-3000 area meter after the
gas exchange experiment was concluded. Thus, the Pn and E per unit leaf
area were then calculated. The maximum Pn and E needed for the analyti-
cal calculations were then determined from the hourly variations of Pn and
E from 6 AM to 7 PM. Pn is the rate of the uptake of CO2 per unit leaf
area, and thus the net assimilation (Am) per unit leaf area is calculated by
subtracting the weight of carbon from the total molecular weight of CO2

on the basis of the maximum Pn. The maximum daily transpiration, Em and
maximum daily net assimilation, Am are then scaled to the daily duration of
transpiration and photosynthesis activities, which is estimated in 13 h for the
study area.

The root respiration coefficient, Rr , the fraction of daily assimilation lost
in respiration by roots per unit mass of roots, was calculated from root
respiration rates (obtained using the portable Li-6400 gas analysis system)
and dry root weights. The other plant traits, e.g., the specific leaf area
(ρ), leaf mass ratio (fL), growth yield (Yg), and senescence rate (q), were
determined during the field survey (14). More details about the procedures
are given in Field Observations. The values of the parameters are shown in
Table S2.

Correcting the Variance. We have mentioned in passing two corrections to
the variance that might arise, due to the variability between individual
plants (i.e., a spatial correction), as well as to the interannual correlations
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of the measurements (i.e., a temporal correction). We address both types
here and show that they are small.

We begin with the interplant variability. The most likely source of such
variability in our model is that each plant may have a different value of
the term α/γ, reflecting either variability in the efficiency of the plant (the
amount of biomass realized per unit of water) or, more likely, variability in
the horizontal spread of the root zone, which translates into a variability
in the amount of water provided to the plant by each rainfall event. As
shown in Eqs. S35 and S36, variability in this quantity scales the biomass of
the corresponding plant by a fixed amount, but otherwise does not change
its probabilistic behavior in time. If we let B0(t) denote the biomass corre-
sponding to the values α/γ used previously, we can write for plant i

Bi(t) = ZiB0(t), [8]

where Zi is the relative efficiency, now permitted to have a spread around
the reference value (i.e., the mean value) of unity. Each measurement of
biomass at a given point of time involves an averaging over np plants,

B(t) =
1

np

np∑
i=1

Bi(t) = µ̂Z B0(t), [9]

seen above to separate as a product of the average relative efficiency
with the reference biomass (which is, to reiterate, the one corresponding
to the efficiency value used throughout this paper). The total variance is
obtained by conditioning on the value of the random variable µ̂Z , using the
law of total variance (see Eqs. S35–S40 for details):

Var[B] = σ
2
B + Var[µ̂Z ]µB = σ

2
B

(
1 + µ

2
B

1

np

σ2
Z

σ2
B

)
. [10]

Here, σ2
B is the analytical variance induced by the stochastic rainfall process.

The second term in the parentheses is the fractional variance correction due
the interplant variability, which depends on two new quantities: the vari-
ance of the relative efficiency σ2

Z , determined by the detailed, plant-by-plant
measurements made in the dry season of 2016 as σ2

Z ≈ 0.056, and also the
number of plants np used to determine each year’s biomass. The plot in
which the 2016 dry season measurements were made had 22 plants, and
the other plots had a comparable number, so that the variance correction
from this source is about 1%.

We turn now to the temporal correction; because of the interannual cor-
relations of the measurements, the standard estimate of the variance will
be biased. In particular, because the correlations are positive, it will on aver-
age yield an underestimate. The standard estimator of the variance for n
independent measurements Xi is

σ̂
2

=
1

n− 1

n∑
i=1

(Xi − µ̂)2
. [11]

Taking the expectation of both sides gives

E[σ̂
2
] = σ

2 −
1

n(n− 1)

n∑
i=1

∑
j 6=i

σ
2
i,j. [12]

As shown in Eq. S33, the autocovariance between measurements i, j is
p|i−j|

a , where as before pa is a decay factor (Eqs. 6 and 7). Substituting and
summing the resultant geometric series gives the result in Eq. 13, whence
we see that the error is about 1% (with n = 14, using all data shown in
Table S3):

E[σ̂
2
] ≈ σ2

(
1−

2pa

n

)
. [13]

Determining the Rainfall Parameters. As a final point, we address the ques-
tion of how to accurately determine the rainfall parameters. The values
used thus far were obtained by averaging over a relatively long time period,
1956–2015, whereas our biomass measurements were made over the shorter
period 1981–1998, with the bulk of the measurements in 1989–1998 when
all four plots were incorporated. To justify this, let us consider what would
happen if we tried to determine the rainfall parameters from a more tar-
geted time interval, e.g., the 10 y of 1989–1998. To be concrete, let us con-
sider the determination of the wet season rainfall arrival rate λ0,w . Suppose
the true value were as estimated above, λ0,w = 0.231 d−1; then we can com-
pute the sampling error as follows. The variance over time T of the number
of rainfall arrivals for such a Poisson process is

σ
2
N = λ0,w T [14]

and the variance in the corresponding estimate λ̂0,w = N(T)/T is

σ
2
λ̂0,w

=
λ0,w T

T2
=
λ0,w

T
. [15]

If we made this estimate over 10 y of wet seasons, then T = 10 Tw ,
and we would find that σλ̂0,w

= 0.0123 d−1, and so the size of the

2σ range would be 21% of the true value, which is rather large. Thus,
in using the full rainfall history to estimate the parameters, we have
made a tradeoff: We reduce this statistical imprecision of the deter-
mination, but we necessarily risk averaging out genuine variations. A
more detailed climatological history is beyond the scope of this work,
although any reader concerned by this method may be assuaged by the
fact if we did restrict our estimation window to, e.g., 1989–1998, we
would get (for the {wet, dry} season, respectively) a = {4.33, 2.41} mm,
λ0 = {0.221, 0.0778} d−1, λ= {0.175, 0.0514} d−1, yielding the biomass
prediction µB = {184.5, 71.6} g·m−2, σB = {46.2, 17.6} g·m−2; these values
are almost identical to the stated results.
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